Book Image

The Deep Learning with Keras Workshop

By : Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
1 (1)
Book Image

The Deep Learning with Keras Workshop

1 (1)
By: Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat

Overview of this book

New experiences can be intimidating, but not this one! This beginner’s guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you’ll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you’ll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.
Table of Contents (11 chapters)
Preface

Accuracy

To understand accuracy properly, let's explore model evaluation. Model evaluation is an integral part of the model development process. Once you've built your model and executed it, the next step is to evaluate your model.

A model is built on a training dataset and evaluating a model's performance on the same training dataset is bad practice in data science. Once a model has been trained on a training dataset, it should be evaluated on a dataset that is completely different from the training dataset. This dataset is known as the test dataset. The objective should always be to build a model that generalizes, which means the model should produce similar (but not the same) results, or relatively similar results, on any dataset. This can only be achieved if we evaluate the model on data that is unknown to it.

The model evaluation process requires a metric that can quantify a model's performance. The simplest metric for model evaluation is accuracy. Accuracy...