Book Image

The Deep Learning with Keras Workshop

By : Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat
1 (1)
Book Image

The Deep Learning with Keras Workshop

1 (1)
By: Matthew Moocarme, Mahla Abdolahnejad, Ritesh Bhagwat

Overview of this book

New experiences can be intimidating, but not this one! This beginner’s guide to deep learning is here to help you explore deep learning from scratch with Keras, and be on your way to training your first ever neural networks. What sets Keras apart from other deep learning frameworks is its simplicity. With over two hundred thousand users, Keras has a stronger adoption in industry and the research community than any other deep learning framework. The Deep Learning with Keras Workshop starts by introducing you to the fundamental concepts of machine learning using the scikit-learn package. After learning how to perform the linear transformations that are necessary for building neural networks, you'll build your first neural network with the Keras library. As you advance, you'll learn how to build multi-layer neural networks and recognize when your model is underfitting or overfitting to the training data. With the help of practical exercises, you’ll learn to use cross-validation techniques to evaluate your models and then choose the optimal hyperparameters to fine-tune their performance. Finally, you’ll explore recurrent neural networks and learn how to train them to predict values in sequential data. By the end of this book, you'll have developed the skills you need to confidently train your own neural network models.
Table of Contents (11 chapters)
Preface

Summary

In this chapter, we covered model evaluation and accuracy in depth. We learned how accuracy is not the most appropriate technique for evaluation when our dataset is imbalanced. We also learned how to compute a confusion matrix using scikit-learn and how to derive other metrics, such as sensitivity, specificity, precision, and false positive rate.

Finally, we understood how to use threshold values to adjust metrics and how ROC curves and AUC scores help us evaluate our models. It is very common to deal with imbalanced datasets in real-life problems. Problems such as credit card fraud detection, disease prediction, and spam email detection all have imbalanced data in different proportions.

In the next chapter, we will learn about a different kind of neural network architecture (convolutional neural networks) that performs well on image classification tasks. We will test performance by classifying images into two classes and experiment with different architectures and activation...