Book Image

Hands-On Data Analysis with Pandas - Second Edition

By : Stefanie Molin
5 (1)
Book Image

Hands-On Data Analysis with Pandas - Second Edition

5 (1)
By: Stefanie Molin

Overview of this book

Extracting valuable business insights is no longer a ‘nice-to-have’, but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time. This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making – valuable knowledge that can be applied across multiple domains.
Table of Contents (21 chapters)
Section 1: Getting Started with Pandas
Section 2: Using Pandas for Data Analysis
Section 3: Applications – Real-World Analyses Using Pandas
Section 4: Introduction to Machine Learning with Scikit-Learn
Section 5: Additional Resources

Grabbing subsets of the data

So far, we have learned how to work with and summarize the data as a whole; however, we will often be interested in performing operations and/or analyses on subsets of our data. There are many types of subsets we may look to isolate from our data, such as selecting only specific columns or rows as a whole or when a specific criterion is met. In order to obtain subsets of the data, we need to be familiar with selection, slicing, indexing, and filtering.

For this section, we will work in the 5-subsetting_data.ipynb notebook. Our setup is as follows:

>>> import pandas as pd
>>> df = pd.read_csv('data/earthquakes.csv')

Selecting columns

In the previous section, we saw an example of column selection when we looked at the unique values in the alert column; we accessed the column as an attribute of the dataframe. Remember that a column is a Series object, so, for example, selecting the mag column in the earthquake data gives...