Book Image

Hands-On Data Analysis with Pandas - Second Edition

By : Stefanie Molin
5 (1)
Book Image

Hands-On Data Analysis with Pandas - Second Edition

5 (1)
By: Stefanie Molin

Overview of this book

Extracting valuable business insights is no longer a ‘nice-to-have’, but an essential skill for anyone who handles data in their enterprise. Hands-On Data Analysis with Pandas is here to help beginners and those who are migrating their skills into data science get up to speed in no time. This book will show you how to analyze your data, get started with machine learning, and work effectively with the Python libraries often used for data science, such as pandas, NumPy, matplotlib, seaborn, and scikit-learn. Using real-world datasets, you will learn how to use the pandas library to perform data wrangling to reshape, clean, and aggregate your data. Then, you will learn how to conduct exploratory data analysis by calculating summary statistics and visualizing the data to find patterns. In the concluding chapters, you will explore some applications of anomaly detection, regression, clustering, and classification using scikit-learn to make predictions based on past data. This updated edition will equip you with the skills you need to use pandas 1.x to efficiently perform various data manipulation tasks, reliably reproduce analyses, and visualize your data for effective decision making – valuable knowledge that can be applied across multiple domains.
Table of Contents (21 chapters)
Section 1: Getting Started with Pandas
Section 2: Using Pandas for Data Analysis
Section 3: Applications – Real-World Analyses Using Pandas
Section 4: Introduction to Machine Learning with Scikit-Learn
Section 5: Additional Resources

Chapter 5: Visualizing Data with Pandas and Matplotlib

So far, we have been working with data strictly in a tabular format. However, the human brain excels at picking out visual patterns; hence, our natural next step is learning how to visualize our data. Visualizations make it much easier to spot aberrations in our data and explain our findings to others. However, we should not reserve data visualizations exclusively for those we present our conclusions to, as visualizations will be crucial in helping us understand our data quickly and more completely in our exploratory data analysis.

There are numerous types of visualizations that go way beyond what we may have seen in the past. In this chapter, we will cover the most common plot types, such as line plots, histograms, scatter plots, and bar plots, along with several other plot types that build upon these. We won't be covering pie charts—they are notorious for being difficult to read properly, and there are better ways...