Book Image

Azure Data Scientist Associate Certification Guide

By : Andreas Botsikas, Michael Hlobil
Book Image

Azure Data Scientist Associate Certification Guide

By: Andreas Botsikas, Michael Hlobil

Overview of this book

The Azure Data Scientist Associate Certification Guide helps you acquire practical knowledge for machine learning experimentation on Azure. It covers everything you need to pass the DP-100 exam and become a certified Azure Data Scientist Associate. Starting with an introduction to data science, you'll learn the terminology that will be used throughout the book and then move on to the Azure Machine Learning (Azure ML) workspace. You'll discover the studio interface and manage various components, such as data stores and compute clusters. Next, the book focuses on no-code and low-code experimentation, and shows you how to use the Automated ML wizard to locate and deploy optimal models for your dataset. You'll also learn how to run end-to-end data science experiments using the designer provided in Azure ML Studio. You'll then explore the Azure ML Software Development Kit (SDK) for Python and advance to creating experiments and publishing models using code. The book also guides you in optimizing your model's hyperparameters using Hyperdrive before demonstrating how to use responsible AI tools to interpret and debug your models. Once you have a trained model, you'll learn to operationalize it for batch or real-time inferences and monitor it in production. By the end of this Azure certification study guide, you'll have gained the knowledge and the practical skills required to pass the DP-100 exam.
Table of Contents (17 chapters)
1
Section 1: Starting your cloud-based data science journey
6
Section 2: No code data science experimentation
9
Section 3: Advanced data science tooling and capabilities

Creating a batch and real-time inference pipeline

This section will discuss the two options of deploying an inference pipeline from the designer: batch and real time:

  • With batch predictions, you asynchronously score large datasets.
  • With real-time prediction, you score a small dataset or a single row in real time.

When you create an inference pipeline, either batch or real time, AzureML takes care of the following things:

  • AzureML stores the trained model and all the trained data processing modules as an asset in the asset library under the Datasets category.
  • It removes unnecessary modules such as Train Model and Split Data automatically.
  • It adds the trained model to the pipeline.

Especially for real-time inference pipelines, AzureML will add a web service input and a web service output in the final pipeline.

Let's start by creating a batch pipeline, something you will do in the next section.

Creating a batch pipeline

In this section...