Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Scalable Data Streaming with Amazon Kinesis
  • Table Of Contents Toc
Scalable Data Streaming with Amazon Kinesis

Scalable Data Streaming with Amazon Kinesis

By : Makota, Brian Maguire, Gagne, Chakrabarti
5 (4)
close
close
Scalable Data Streaming with Amazon Kinesis

Scalable Data Streaming with Amazon Kinesis

5 (4)
By: Makota, Brian Maguire, Gagne, Chakrabarti

Overview of this book

Amazon Kinesis is a collection of secure, serverless, durable, and highly available purpose-built data streaming services. This data streaming service provides APIs and client SDKs that enable you to produce and consume data at scale. Scalable Data Streaming with Amazon Kinesis begins with a quick overview of the core concepts of data streams, along with the essentials of the AWS Kinesis landscape. You'll then explore the requirements of the use case shown through the book to help you get started and cover the key pain points encountered in the data stream life cycle. As you advance, you'll get to grips with the architectural components of Kinesis, understand how they are configured to build data pipelines, and delve into the applications that connect to them for consumption and processing. You'll also build a Kinesis data pipeline from scratch and learn how to implement and apply practical solutions. Moving on, you'll learn how to configure Kinesis on a cloud platform. Finally, you’ll learn how other AWS services can be integrated into Kinesis. These services include Redshift, Dynamo Database, AWS S3, Elastic Search, and third-party applications such as Splunk. By the end of this AWS book, you’ll be able to build and deploy your own Kinesis data pipelines with Kinesis Data Streams (KDS), Kinesis Data Firehose (KFH), Kinesis Video Streams (KVS), and Kinesis Data Analytics (KDA).
Table of Contents (13 chapters)
close
close
1
Section 1: Introduction to Data Streaming and Amazon Kinesis
5
Section 2: Deep Dive into Kinesis
10
Section 3: Integrations

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering Machine Learning on AWS

Dr. Saket S.R. Mengle, Maximo Gurmendez

ISBN: 978-1-78934-979-5

  • Manage AI workflows by using AWS cloud to deploy services that feed smart data products
  • Use SageMaker services to create recommendation models
  • Scale model training and deployment using Apache Spark on EMR
  • Understand how to cluster big data through EMR and seamlessly integrate it with SageMaker
  • Build deep learning models on AWS using TensorFlow and deploy them as services
  • Enhance your apps by combining Apache Spark and Amazon SageMaker

Learn Amazon SageMaker

Julien Simon

ISBN: 978-1-80020-891-9

  • Create and automate end-to-end machine learning workflows on Amazon Web Services (AWS)
  • Become well-versed with data annotation and preparation techniques
  • Use AutoML features to build and train machine learning models with...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Scalable Data Streaming with Amazon Kinesis
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon