Book Image

Python Data Cleaning Cookbook

By : Michael Walker
Book Image

Python Data Cleaning Cookbook

By: Michael Walker

Overview of this book

Getting clean data to reveal insights is essential, as directly jumping into data analysis without proper data cleaning may lead to incorrect results. This book shows you tools and techniques that you can apply to clean and handle data with Python. You'll begin by getting familiar with the shape of data by using practices that can be deployed routinely with most data sources. Then, the book teaches you how to manipulate data to get it into a useful form. You'll also learn how to filter and summarize data to gain insights and better understand what makes sense and what does not, along with discovering how to operate on data to address the issues you've identified. Moving on, you'll perform key tasks, such as handling missing values, validating errors, removing duplicate data, monitoring high volumes of data, and handling outliers and invalid dates. Next, you'll cover recipes on using supervised learning and Naive Bayes analysis to identify unexpected values and classification errors, and generate visualizations for exploratory data analysis (EDA) to visualize unexpected values. Finally, you'll build functions and classes that you can reuse without modification when you have new data. By the end of this Python book, you'll be equipped with all the key skills that you need to clean data and diagnose problems within it.
Table of Contents (12 chapters)

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Practical Data Analysis Using Jupyter Notebook

Marc Wintjen

ISBN: 978-1-83882-603-1

  • Understand the importance of data literacy and how to communicate effectively using data
  • Find out how to use Python packages such as NumPy, pandas, Matplotlib, and the Natural Language Toolkit (NLTK) for data analysis
  • Wrangle data and create DataFrames using pandas
  • Produce charts and data visualizations using time-series datasets
  • Discover relationships and how to join data together using SQL
  • Use NLP techniques to work with unstructured data to create sentiment analysis models
  • Discover patterns in real-world datasets that provide accurate insights

Hands-On Exploratory Data Analysis with Python

Suresh Kumar Mukhiya, Usman Ahmed

ISBN: 978-1-78953-725-3

  • Import, clean, and explore data to perform preliminary analysis using powerful...