Book Image

Transformers for Natural Language Processing

By : Denis Rothman
Book Image

Transformers for Natural Language Processing

By: Denis Rothman

Overview of this book

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
Table of Contents (16 chapters)
Other Books You May Enjoy

Training and performance

The original Transformer was trained on a 4.5-million-sentence-pair English-German dataset and a 36-million-sentence English-French dataset.

The datasets come from Workshops on Machine Translation (WMT), which can be found at the following link if you wish to explore the WMT datasets:

The training of the original Transformer base models took 12 hours to train for 100,000 steps on a machine with 8 NVIDIA P100 GPUs. The big models took 3.5 days for 300,000 steps.

The original Transformer outperformed all the previous machine translation models with a BLEU score of 41.8. The result was obtained on the WMT English-to-French dataset.

BLEU stands for Bilingual Evaluation Understudy. It is an algorithm that evaluates the quality of the results of machine translations.

The Google Research and Google Brain team applied optimization strategies to improve the performance of the Transformer. For example, the Adam optimizer...