Book Image

Transformers for Natural Language Processing

By : Denis Rothman
Book Image

Transformers for Natural Language Processing

By: Denis Rothman

Overview of this book

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
Table of Contents (16 chapters)
Other Books You May Enjoy

Running downstream tasks

In this section, we will just jump into some transformer cars and drive them around a bit to see what they do. There are many models and tasks. We will run a few of them in this section. Once you understand the process of running a few tasks, you will quickly understand all of them. After all, the human baseline of all of these tasks is us!

A downstream task is a fine-tuned transformer task that inherited the model and parameters from a pretrained transformer model.

A downstream task is thus the perspective of a pretrained model running fine-tuned tasks. That means, depending on the model, a task is downstream if it wasn't used to fully pretrain the model. In this section, we will consider all of the tasks as downstream since we did not pretrain them.

Models will evolve, as will databases, benchmark methods, accuracy measurement methods, and leaderboard criteria. But the structure of human thought reflected through the downstream tasks in...