Book Image

The Data Science Workshop - Second Edition

By : Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare
5 (1)
Book Image

The Data Science Workshop - Second Edition

5 (1)
By: Anthony So, Thomas V. Joseph, Robert Thas John, Andrew Worsley, Dr. Samuel Asare

Overview of this book

Where there’s data, there’s insight. With so much data being generated, there is immense scope to extract meaningful information that’ll boost business productivity and profitability. By learning to convert raw data into game-changing insights, you’ll open new career paths and opportunities. The Data Science Workshop begins by introducing different types of projects and showing you how to incorporate machine learning algorithms in them. You’ll learn to select a relevant metric and even assess the performance of your model. To tune the hyperparameters of an algorithm and improve its accuracy, you’ll get hands-on with approaches such as grid search and random search. Next, you’ll learn dimensionality reduction techniques to easily handle many variables at once, before exploring how to use model ensembling techniques and create new features to enhance model performance. In a bid to help you automatically create new features that improve your model, the book demonstrates how to use the automated feature engineering tool. You’ll also understand how to use the orchestration and scheduling workflow to deploy machine learning models in batch. By the end of this book, you’ll have the skills to start working on data science projects confidently. By the end of this book, you’ll have the skills to start working on data science projects confidently.
Table of Contents (16 chapters)
Preface
12
12. Feature Engineering

Summary

You are now ready to perform cluster analysis with the k-means algorithm on your own dataset. This type of analysis is very popular in the industry for segmenting customer profiles as well as detecting suspicious transactions or anomalies.

We learned about a lot of different concepts, such as centroids and squared Euclidean distance. We went through the main k-means hyperparameters: init (initialization method), n_init (number of initialization runs), n_clusters (number of clusters), and random_state (specified seed). We also discussed the importance of choosing the optimal number of clusters, initializing centroids properly, and standardizing data. You have learned how to use the following Python packages: pandas, altair, sklearn, and KMeans.

In this chapter, we only looked at k-means, but it is not the only clustering algorithm. There are quite a lot of algorithms that use different approaches, such as hierarchical clustering, principal component analysis, and the Gaussian...