Book Image

Mastering PostgreSQL 13 - Fourth Edition

By : Hans-Jürgen Schönig
Book Image

Mastering PostgreSQL 13 - Fourth Edition

By: Hans-Jürgen Schönig

Overview of this book

Thanks to its reliability, robustness, and high performance, PostgreSQL has become one of the most advanced open source databases on the market. This updated fourth edition will help you understand PostgreSQL administration and how to build dynamic database solutions for enterprise apps with the latest release of PostgreSQL, including designing both physical and technical aspects of the system architecture with ease. Starting with an introduction to the new features in PostgreSQL 13, this book will guide you in building efficient and fault-tolerant PostgreSQL apps. You’ll explore advanced PostgreSQL features, such as logical replication, database clusters, performance tuning, advanced indexing, monitoring, and user management, to manage and maintain your database. You’ll then work with the PostgreSQL optimizer, configure PostgreSQL for high speed, and move from Oracle to PostgreSQL. The book also covers transactions, locking, and indexes, and shows you how to improve performance with query optimization. You’ll also focus on how to manage network security and work with backups and replication while exploring useful PostgreSQL extensions that optimize the performance of large databases. By the end of this PostgreSQL book, you’ll be able to get the most out of your database by executing advanced administrative tasks.
Table of Contents (15 chapters)

Understanding transaction isolation levels

Up until now, you have seen how to handle locking, as well as some basic concurrency. In this section, you will learn about transaction isolation. To me, this is one of the most neglected topics in modern software development. Only a small fraction of software developers are actually aware of this issue, which in turn leads to mind-boggling bugs.

Here is an example of what can happen:

Transaction 1

Transaction 2

BEGIN;

SELECT sum(balance) FROM t_account;

User will see 300

BEGIN;

INSERT INTO t_account (balance) VALUES (100);

COMMIT;

SELECT sum(balance) FROM t_account;

User will see 400

COMMIT;

Most users would actually expect the first transaction to always return 300, regardless of the second transaction. However, this isn't true. By default, PostgreSQL runs in the READ COMMITTED transaction isolation mode. This means that every statement inside a transaction will get a new snapshot of...