Book Image

Essential PySpark for Scalable Data Analytics

By : Sreeram Nudurupati
Book Image

Essential PySpark for Scalable Data Analytics

By: Sreeram Nudurupati

Overview of this book

Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems.
Table of Contents (19 chapters)
1
Section 1: Data Engineering
6
Section 2: Data Science
13
Section 3: Data Analysis

Introduction to the ML life cycle

The ML life cycle is a continuous process that a data science project follows. It contains four major stages, starting with data collection and preparation, model training, model evaluation, and finally model inferencing and monitoring. The ML process is a continuous one, where the cycle iterates between improving the data and constantly improving the model's performance; or, rather, keeping it from degrading over time:

Figure 9.1 – ML life cycle

The previous diagram presents the continuous process of ML life cycle management, from data preparation to model development, and then from training to model deployment and monitoring. When model performance degrades due to either a change in the training data or the model code or changes in model parameters, the cyclic process starts all over again.

Processes for data collection and preparation, cleansing, and consolidation, as well as techniques for training various...