Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By : Somanath Nanda, Weslley Moura
Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By: Somanath Nanda, Weslley Moura

Overview of this book

The AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.
Table of Contents (14 chapters)
1
Section 1: Introduction to Machine Learning
4
Section 2: Data Engineering and Exploratory Data Analysis
9
Section 3: Data Modeling

Image processing

Image processing is a very popular topic in machine learning. The idea is pretty self-explanatory: creating models that can analyze images and make inferences on top of them. By inference, you can understand this as detecting objects in an image, classifying images, and so on.

AWS offers a set of built-in algorithms we can use to train image processing models. In the next few sections, we will have a look at those algorithms.

Image classification algorithm

As the name suggests, the image classification algorithm is used to classify images using supervised learning. In other words, it needs a label within each image. It supports multi-label classification.

The way it operates is simple: during training, it receives an image and its associated labels. During inference, it receives an image and returns all the predicted labels. The image classification algorithm uses a CNN (ResNet) for training. It can either train the model from scratch or take advantage...