Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By : Somanath Nanda, Weslley Moura
Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By: Somanath Nanda, Weslley Moura

Overview of this book

The AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.
Table of Contents (14 chapters)
Section 1: Introduction to Machine Learning
Section 2: Data Engineering and Exploratory Data Analysis
Section 3: Data Modeling

Visualizing distributions in your data

Exploring the distribution of your feature is very important to understand some key characteristics of it, such as its skewness, mean, median, and quantiles. You can easily visualize skewness by plotting a histogram. This type of chart groups your data into bins or buckets and performs counts on top of them. For example, the following chart shows a histogram for the age variable:

Figure 4.7 – Plotting distributions with a histogram

Looking at the histogram, we can conclude that most of the people are between 20 and 50 years old. We can also see a few people more than 60 years old. Another example of a histogram is shown in the following chart, where we are plotting the distribution of payments from a particular event that has different ticket prices. We want to see how much money people are paying per ticket:

Figure 4.8 – Checking skewness with a histogram

Here, we can see that the...