Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By : Somanath Nanda, Weslley Moura
Book Image

AWS Certified Machine Learning Specialty: MLS-C01 Certification Guide

By: Somanath Nanda, Weslley Moura

Overview of this book

The AWS Certified Machine Learning Specialty exam tests your competency to perform machine learning (ML) on AWS infrastructure. This book covers the entire exam syllabus using practical examples to help you with your real-world machine learning projects on AWS. Starting with an introduction to machine learning on AWS, you'll learn the fundamentals of machine learning and explore important AWS services for artificial intelligence (AI). You'll then see how to prepare data for machine learning and discover a wide variety of techniques for data manipulation and transformation for different types of variables. The book also shows you how to handle missing data and outliers and takes you through various machine learning tasks such as classification, regression, clustering, forecasting, anomaly detection, text mining, and image processing, along with the specific ML algorithms you need to know to pass the exam. Finally, you'll explore model evaluation, optimization, and deployment and get to grips with deploying models in a production environment and monitoring them. By the end of this book, you'll have gained knowledge of the key challenges in machine learning and the solutions that AWS has released for each of them, along with the tools, methods, and techniques commonly used in each domain of AWS ML.
Table of Contents (14 chapters)
Section 1: Introduction to Machine Learning
Section 2: Data Engineering and Exploratory Data Analysis
Section 3: Data Modeling

Chapter 6: AWS Services for Data Processing

In the previous chapter, we learned about several ways of storing data in AWS. In this chapter, we will explore the techniques for using that data and gaining some insight from the data. There are use cases where you have to process your data or load the data to a hive data warehouse to query and analyze the data. If you are on AWS and your data is in S3, then you have to create a table in hive on AWS EMR to query them. To provide the same as a managed service, AWS has a product called Athena, where you have to create a data catalog and query your data on S3. If you need to transform the data, then AWS Glue is the best option to transform and restore it to S3. Let's imagine a use case where we need to stream the data and create analytical reports on that data. For such scenarios, we can opt for AWS Kinesis Data Streams to stream data and store it in S3. Using Glue, the same data can be copied to Redshift for further analytical utilization...