Book Image

The Machine Learning Solutions Architect Handbook

By : David Ping
Book Image

The Machine Learning Solutions Architect Handbook

By: David Ping

Overview of this book

When equipped with a highly scalable machine learning (ML) platform, organizations can quickly scale the delivery of ML products for faster business value realization. There is a huge demand for skilled ML solutions architects in different industries, and this handbook will help you master the design patterns, architectural considerations, and the latest technology insights you’ll need to become one. You’ll start by understanding ML fundamentals and how ML can be applied to solve real-world business problems. Once you've explored a few leading problem-solving ML algorithms, this book will help you tackle data management and get the most out of ML libraries such as TensorFlow and PyTorch. Using open source technology such as Kubernetes/Kubeflow to build a data science environment and ML pipelines will be covered next, before moving on to building an enterprise ML architecture using Amazon Web Services (AWS). You’ll also learn about security and governance considerations, advanced ML engineering techniques, and how to apply bias detection, explainability, and privacy in ML model development. By the end of this book, you’ll be able to design and build an ML platform to support common use cases and architecture patterns like a true professional.
Table of Contents (17 chapters)
Section 1: Solving Business Challenges with Machine Learning Solution Architecture
Section 2: The Science, Tools, and Infrastructure Platform for Machine Learning
Section 3: Technical Architecture Design and Regulatory Considerations for Enterprise ML Platforms

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Machine Learning with Amazon SageMaker Cookbook

Joshua Arvin Lat

ISBN: 9781800567030

  • Train and deploy NLP, time series forecasting, and computer vision models to solve different business problems
  • Push the limits of customization in SageMaker using custom container images
  • Use AutoML capabilities with SageMaker Autopilot to create high-quality models
  • Work with effective data analysis and preparation techniques
  • Explore solutions for debugging and managing ML experiments and deployments
  • Deal with bias detection and ML explainability requirements using SageMaker Clarify
  • Automate intermediate and complex deployments and workflows using a variety of solutions

Amazon SageMaker Best Practices

Sireesha Muppala, Randy DeFauw, Shelbee Eigenbrode

ISBN: 9781801070522

  • Perform data bias detection with AWS Data Wrangler and SageMaker...