Book Image

Natural Language Processing with Flair

By : Tadej Magajna
Book Image

Natural Language Processing with Flair

By: Tadej Magajna

Overview of this book

Flair is an easy-to-understand natural language processing (NLP) framework designed to facilitate training and distribution of state-of-the-art NLP models for named entity recognition, part-of-speech tagging, and text classification. Flair is also a text embedding library for combining different types of embeddings, such as document embeddings, Transformer embeddings, and the proposed Flair embeddings. Natural Language Processing with Flair takes a hands-on approach to explaining and solving real-world NLP problems. You'll begin by installing Flair and learning about the basic NLP concepts and terminology. You will explore Flair's extensive features, such as sequence tagging, text classification, and word embeddings, through practical exercises. As you advance, you will train your own sequence labeling and text classification models and learn how to use hyperparameter tuning in order to choose the right training parameters. You will learn about the idea behind one-shot and few-shot learning through a novel text classification technique TARS. Finally, you will solve several real-world NLP problems through hands-on exercises, as well as learn how to deploy Flair models to production. By the end of this Flair book, you'll have developed a thorough understanding of typical NLP problems and you’ll be able to solve them with Flair.
Table of Contents (15 chapters)
1
Part 1: Understanding and Solving NLP with Flair
6
Part 2: Deep Dive into Flair – Training Custom Models
11
Part 3: Real-World Applications with Flair

Other Books You May Enjoy

If you enjoyed this book, you may be interested in these other books by Packt:

Mastering spaCy

Duygu Altinok

ISBN: 978-1-80056-335-3

  • Install spaCy, get started easily, and write your first Python script
  • Understand core linguistic operations of spaCy
  • Discover how to combine rule-based components with spaCy statistical models
  • Become well-versed with named entity and keyword extraction
  • Build your own ML pipelines using spaCy
  • Apply all the knowledge you've gained to design a chatbot using spaCy

Distributed Machine Learning with Python

By Guanhua Wang

ISBN: 978-1-80181-569-7

  • Deploy distributed model training and serving pipelines
  • Get to grips with the advanced features in TensorFlow and PyTorch
  • Mitigate system bottlenecks during in-parallel model training and serving
  • Discover the latest techniques on top of classical parallelism paradigm
  • Explore advanced features in Megatron...