Book Image

Natural Language Processing with Flair

By : Tadej Magajna
Book Image

Natural Language Processing with Flair

By: Tadej Magajna

Overview of this book

Flair is an easy-to-understand natural language processing (NLP) framework designed to facilitate training and distribution of state-of-the-art NLP models for named entity recognition, part-of-speech tagging, and text classification. Flair is also a text embedding library for combining different types of embeddings, such as document embeddings, Transformer embeddings, and the proposed Flair embeddings. Natural Language Processing with Flair takes a hands-on approach to explaining and solving real-world NLP problems. You'll begin by installing Flair and learning about the basic NLP concepts and terminology. You will explore Flair's extensive features, such as sequence tagging, text classification, and word embeddings, through practical exercises. As you advance, you will train your own sequence labeling and text classification models and learn how to use hyperparameter tuning in order to choose the right training parameters. You will learn about the idea behind one-shot and few-shot learning through a novel text classification technique TARS. Finally, you will solve several real-world NLP problems through hands-on exercises, as well as learn how to deploy Flair models to production. By the end of this Flair book, you'll have developed a thorough understanding of typical NLP problems and you’ll be able to solve them with Flair.
Table of Contents (15 chapters)
1
Part 1: Understanding and Solving NLP with Flair
6
Part 2: Deep Dive into Flair – Training Custom Models
11
Part 3: Real-World Applications with Flair

Understanding hyperparameter tuning

When first faced with a long list of model training parameters and their possible values, you might think that in order to successfully train a model, you need a special superpower that helps you pick the right parameter for the right scenario. This isn't necessarily true. While experience may help you narrow down the set of possible hyperparameters, there usually isn't a reliable way of knowing with certainty what the best hyperparameter is in advance.

Let's imagine the simplest possible scenario – a sequence tagging model trainer that receives a single parameter – say, a learning rate. This is generally a value between 0 (exclusive) and 1. To create a set of possible hyperparameter values, we simply discretize the range into a set of 10 possible hyperparameter values: [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]. We can then perform the most trivial type of hyperparameter optimization by training 10 different...