Book Image

Mastering Transformers

By : Savaş Yıldırım, Meysam Asgari- Chenaghlu
Book Image

Mastering Transformers

By: Savaş Yıldırım, Meysam Asgari- Chenaghlu

Overview of this book

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.
Table of Contents (16 chapters)
1
Section 1: Introduction – Recent Developments in the Field, Installations, and Hello World Applications
4
Section 2: Transformer Models – From Autoencoding to Autoregressive Models
10
Section 3: Advanced Topics

Summary

The importance of this chapter is that we have learned how to mitigate the burden of running large models under limited computational capacity. We first discussed and implemented how to make efficient models out of trained models using distillation, pruning, and quantization. It is important to pre-train a smaller general-purpose language model such as DistilBERT. Such light models can then be fine-tuned with good performance on a wide variety of problems compared to their non-distilled counterparts.

Second, we have gained knowledge about efficient sparse transformers that replace the full self-attention matrix with a sparse one using approximation techniques such as Linformer, BigBird, Performer, and so on. We have seen how they perform on various benchmarks such as computational complexity and memory complexity. The examples showed us these approaches are able to reduce the quadratic complexity to linear complexity without sacrificing the performance.

In the next chapter...