Book Image

Mastering Transformers

By : Savaş Yıldırım, Meysam Asgari- Chenaghlu
Book Image

Mastering Transformers

By: Savaş Yıldırım, Meysam Asgari- Chenaghlu

Overview of this book

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.
Table of Contents (16 chapters)
1
Section 1: Introduction – Recent Developments in the Field, Installations, and Hello World Applications
4
Section 2: Transformer Models – From Autoencoding to Autoregressive Models
10
Section 3: Advanced Topics

Chapter 2: A Hands-On Introduction to the Subject

So far, we have had an overall look at the evolution of Natural Language Processing (NLP) using Deep Learning (DL)-based methods. We have learned some basic information about Transformer and their respective architecture. In this chapter, we are going to have a deeper look into how a transformer model can be used. Tokenizers and models, such as Bidirectional Encoder Representations from Transformer (BERT), will be described in more technical detail in this chapter with hands-on examples, including how to load a tokenizer/model and use community-provided pretrained models. But before using any specific model, we will understand the installation steps required to provide the necessary environment by using Anaconda. In the installation steps, installing libraries and programs on various operating systems such as Linux, Windows, and macOS will be covered. The installation of PyTorch and TensorFlow, in two versions of a Central Processing...