Book Image

Mastering Transformers

By : Savaş Yıldırım, Meysam Asgari- Chenaghlu
Book Image

Mastering Transformers

By: Savaş Yıldırım, Meysam Asgari- Chenaghlu

Overview of this book

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.
Table of Contents (16 chapters)
1
Section 1: Introduction – Recent Developments in the Field, Installations, and Hello World Applications
4
Section 2: Transformer Models – From Autoencoding to Autoregressive Models
10
Section 3: Advanced Topics

Sharing models with the community

HuggingFace provides a very easy-to-use model-sharing mechanism:

  1. You can simply use the following cli tool to log in:
    Transformers-cli login
  2. After you've logged in using your own credentials, you can create a repository:
    Transformers-cli repo create a-fancy-model-name
  3. You can put any model name for the a-fancy-model-name parameter and then it is essential to make sure you have git-lfs:
    git lfs install

    Git LFS is a Git extension used for handling large files. HuggingFace pretrained models are usually large files that require extra libraries such as LFS to be handled by Git.

  4. Then you can clone the repository you have just created:
    git clone https://huggingface.co/username/a-fancy-model-name
  5. Afterward, you can add and remove from the repository as you like, and then, just like Git usage, you have to run the following command:
    git add . && git commit -m "Update from $USER"
    git push

Autoencoding models rely...