Book Image

Mastering Transformers

By : Savaş Yıldırım, Meysam Asgari- Chenaghlu
Book Image

Mastering Transformers

By: Savaş Yıldırım, Meysam Asgari- Chenaghlu

Overview of this book

Transformer-based language models have dominated natural language processing (NLP) studies and have now become a new paradigm. With this book, you'll learn how to build various transformer-based NLP applications using the Python Transformers library. The book gives you an introduction to Transformers by showing you how to write your first hello-world program. You'll then learn how a tokenizer works and how to train your own tokenizer. As you advance, you'll explore the architecture of autoencoding models, such as BERT, and autoregressive models, such as GPT. You'll see how to train and fine-tune models for a variety of natural language understanding (NLU) and natural language generation (NLG) problems, including text classification, token classification, and text representation. This book also helps you to learn efficient models for challenging problems, such as long-context NLP tasks with limited computational capacity. You'll also work with multilingual and cross-lingual problems, optimize models by monitoring their performance, and discover how to deconstruct these models for interpretability and explainability. Finally, you'll be able to deploy your transformer models in a production environment. By the end of this NLP book, you'll have learned how to use Transformers to solve advanced NLP problems using advanced models.
Table of Contents (16 chapters)
1
Section 1: Introduction – Recent Developments in the Field, Installations, and Hello World Applications
4
Section 2: Transformer Models – From Autoencoding to Autoregressive Models
10
Section 3: Advanced Topics

Introduction to token classification

The task of classifying each token in a token sequence is called token classification. This task says that a specific model must be able to classify each token into a class. POS and NER are two of the most well-known tasks in this criterion. However, QA is also another major NLP task that fits in this category. We will discuss the basics of these three tasks in the following sections.

Understanding NER

One of the well-known tasks in the category of token classification is NER – the recognition of each token as an entity or not and identifying the type of each detected entity. For example, a text can contain multiple entities at the same time – person names, locations, organizations, and other types of entities. The following text is a clear example of NER:

George Washington is one the presidents of the United States of America.

George Washington is a person name while the United States of America is a location name. A sequence...