Book Image

Computer Vision on AWS

By : Lauren Mullennex, Nate Bachmeier, Jay Rao
Book Image

Computer Vision on AWS

By: Lauren Mullennex, Nate Bachmeier, Jay Rao

Overview of this book

Computer vision (CV) is a field of artificial intelligence that helps transform visual data into actionable insights to solve a wide range of business challenges. This book provides prescriptive guidance to anyone looking to learn how to approach CV problems for quickly building and deploying production-ready models. You’ll begin by exploring the applications of CV and the features of Amazon Rekognition and Amazon Lookout for Vision. The book will then walk you through real-world use cases such as identity verification, real-time video analysis, content moderation, and detecting manufacturing defects that’ll enable you to understand how to implement AWS AI/ML services. As you make progress, you'll also use Amazon SageMaker for data annotation, training, and deploying CV models. In the concluding chapters, you'll work with practical code examples, and discover best practices and design principles for scaling, reducing cost, improving the security posture, and mitigating bias of CV workloads. By the end of this AWS book, you'll be able to accelerate your business outcomes by building and implementing CV into your production environments with the help of AWS AI/ML services.
Table of Contents (21 chapters)
Part 1: Introduction to CV on AWS and Amazon Rekognition
Part 2: Applying CV to Real-World Use Cases
Part 3: CV at the edge
Part 4: Building CV Solutions with Amazon SageMaker
Part 5: Best Practices for Production-Ready CV Workloads


To build a contactless casino and resort, you must create a few AWS resources. This section outlines the necessary steps.

Creating the face collection

The contactless hotel and casino needs an Amazon Rekognition collection to hold our face metadata:

$ aws rekognition create-collection \
  --region us-east-2 \
  --collection-id "HotelCollection"

This command will report the following output:

  «StatusCode": 200,
  «CollectionArn": "aws:rekognition:region:account:collection/HotelCollection",
  «FaceModelVersion": "6.0"

Creating the image bucket

Amazon Rekognition supports analyzing PNG and JPEG images within an S3 bucket. The bucket must reside in the same region as the one used for the Amazon Rekognition public endpoint:

$ aws s3api create-bucket \
  --bucket ch04-hotel-use2 \
  --region us-east-2 \