Book Image

Machine Learning Engineering with Python

By : Andrew P. McMahon
Book Image

Machine Learning Engineering with Python

By: Andrew P. McMahon

Overview of this book

Machine learning engineering is a thriving discipline at the interface of software development and machine learning. This book will help developers working with machine learning and Python to put their knowledge to work and create high-quality machine learning products and services. Machine Learning Engineering with Python takes a hands-on approach to help you get to grips with essential technical concepts, implementation patterns, and development methodologies to have you up and running in no time. You'll begin by understanding key steps of the machine learning development life cycle before moving on to practical illustrations and getting to grips with building and deploying robust machine learning solutions. As you advance, you'll explore how to create your own toolsets for training and deployment across all your projects in a consistent way. The book will also help you get hands-on with deployment architectures and discover methods for scaling up your solutions while building a solid understanding of how to use cloud-based tools effectively. Finally, you'll work through examples to help you solve typical business problems. By the end of this book, you'll be able to build end-to-end machine learning services using a variety of techniques and design your own processes for consistently performant machine learning engineering.
Table of Contents (13 chapters)
1
Section 1: What Is ML Engineering?
4
Section 2: ML Development and Deployment
9
Section 3: End-to-End Examples

Persisting your models

In the previous chapter, we introduced some of the basics of model version control using MLflow. In particular, we discussed how to log metrics for your ML experiments using the MLflow Tracking API. We are now going to build on this knowledge and consider the touchpoints our training systems should have with model control systems in general.

First, let's recap what we're trying to do with the training system. We want to automate (as far as possible) a lot of the work that was done by the data scientists in finding the first working model, so that we can continually update and create new model versions that still solve the problem in the future. We would also like to have a simple mechanism that allows the results of the training process to be shared with the part of the solution that will carry out the prediction when in production. We can think of our model version control system as a bridge between the different stages of the ML development process...