Book Image

Natural Language Processing with AWS AI Services

By : Mona M, Premkumar Rangarajan
Book Image

Natural Language Processing with AWS AI Services

By: Mona M, Premkumar Rangarajan

Overview of this book

Natural language processing (NLP) uses machine learning to extract information from unstructured data. This book will help you to move quickly from business questions to high-performance models in production. To start with, you'll understand the importance of NLP in today’s business applications and learn the features of Amazon Comprehend and Amazon Textract to build NLP models using Python and Jupyter Notebooks. The book then shows you how to integrate AI in applications for accelerating business outcomes with just a few lines of code. Throughout the book, you'll cover use cases such as smart text search, setting up compliance and controls when processing confidential documents, real-time text analytics, and much more to understand various NLP scenarios. You'll deploy and monitor scalable NLP models in production for real-time and batch requirements. As you advance, you'll explore strategies for including humans in the loop for different purposes in a document processing workflow. Moreover, you'll learn best practices for auto-scaling your NLP inference for enterprise traffic. Whether you're new to ML or an experienced practitioner, by the end of this NLP book, you'll have the confidence to use AWS AI services to build powerful NLP applications.
Table of Contents (23 chapters)
1
Section 1:Introduction to AWS AI NLP Services
5
Section 2: Using NLP to Accelerate Business Outcomes
15
Section 3: Improving NLP Models in Production

Building the document classification workflow

In this section, we will get right down to action and start executing the tasks to build our solution. But first, there are prerequisites we will have to take care of.

Setting up to solve the use case

If you have not done so in the previous chapters, you will first have to create an Amazon SageMaker Jupyter notebook and set up Identity and Access Management (IAM) permissions for that notebook role to access the AWS services we will use in this notebook. After that, you will need to clone the GitHub repository (https://github.com/PacktPublishing/Natural-Language-Processing-with-AWS-AI-Services), go to the Chapter 15 folder, and open the chapter15 classify documents with human in the loop.ipynb notebook.

Now, let's move to the next section to show you how you can set up the libraries and upload training data to Amazon S3 using this notebook.

Setting up and uploading sample documents to Amazon S3

In this step, we will follow...