Book Image

Quantum Machine Learning and Optimisation in Finance

By : Antoine Jacquier, Oleksiy Kondratyev
Book Image

Quantum Machine Learning and Optimisation in Finance

By: Antoine Jacquier, Oleksiy Kondratyev

Overview of this book

With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware. Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware. This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm. This book will help you be one of the first in the finance industry to use quantum machine learning models to solve classically hard real-world problems. We may have moved past the point of quantum computing supremacy, but our quest for establishing quantum computing advantage has just begun!
Table of Contents (4 chapters)

10
Variational Quantum Eigensolver

Parameterised quantum circuits can find many possible applications outside the quantum machine learning use cases considered in the previous chapters. They can be used to solve problems as diverse as portfolio optimisation   [168] and protein folding  [248]. However, one aspect remains the same regardless of the specifics of the particular algorithm: the construction of a quantum state with desired characteristics through an optimal PQC configuration (ansatz) and an optimal set of adjustable PQC parameters. This, in turn, is done through the minimisation of some cost function – it can be a classification error in the case of a QNN-based classifier or a distance between two distributions in the case of QCBM.

The Variational Quantum Eigensolver (VQE) is a PQC-based algorithm that aims to find the smallest eigenvalue (the lowest energy) of a problem Hamiltonian. As we know from Chapter 3, the objective functions of many...