Book Image

TinyML Cookbook

By : Gian Marco Iodice
Book Image

TinyML Cookbook

By: Gian Marco Iodice

Overview of this book

This book explores TinyML, a fast-growing field at the unique intersection of machine learning and embedded systems to make AI ubiquitous with extremely low-powered devices such as microcontrollers. The TinyML Cookbook starts with a practical introduction to this multidisciplinary field to get you up to speed with some of the fundamentals for deploying intelligent applications on Arduino Nano 33 BLE Sense and Raspberry Pi Pico. As you progress, you’ll tackle various problems that you may encounter while prototyping microcontrollers, such as controlling the LED state with GPIO and a push-button, supplying power to microcontrollers with batteries, and more. Next, you’ll cover recipes relating to temperature, humidity, and the three “V” sensors (Voice, Vision, and Vibration) to gain the necessary skills to implement end-to-end smart applications in different scenarios. Later, you’ll learn best practices for building tiny models for memory-constrained microcontrollers. Finally, you’ll explore two of the most recent technologies, microTVM and microNPU that will help you step up your TinyML game. By the end of this book, you’ll be well-versed with best practices and machine learning frameworks to develop ML apps easily on microcontrollers and have a clear understanding of the key aspects to consider during the development phase.
Table of Contents (10 chapters)

Learning the difference between power and energy

Power matters in TinyML, and the target we aim for is in the milliwatt (mW) range or below, which means thousands of times more efficient than a traditional desktop machine.

Although there are cases where we might consider using energy harvesting solutions, such as solar panels, those could not always be possible because of cost and physical dimensions.

However, what do we mean by power and energy? Let's discover these terms by giving a basic overview of the fundamental physical quantities governing electronic circuits.

Voltage versus current

Current is what makes an electronic circuit work, which is the flow of electric charges across surface A of a conductor in a given time, as described in the following diagram:

Figure 1.8 – Current is a flow of electric charges across surface A at a given time

The current is defined as follows:

Here, we have the following...