Book Image

Distributed Machine Learning with Python

By : Guanhua Wang
Book Image

Distributed Machine Learning with Python

By: Guanhua Wang

Overview of this book

Reducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the end of this book, you'll have gained the knowledge and skills needed to build and deploy an efficient data processing pipeline for machine learning model training and inference in a distributed manner.
Table of Contents (17 chapters)
Section 1 – Data Parallelism
Section 2 – Model Parallelism
Section 3 – Advanced Parallelism Paradigms

Sharing knowledge without sharing data

In this section, we will discuss the basic concepts of federated learning. For traditional distributed DNN training, each user/node can get global access to the whole training dataset. However, in federated learning, each user/node does not get global access to the whole training dataset. More specifically, federated learning enables distributed and collaborative training without sharing the input data.

We will first recap the traditional data parallel training. We will then discuss the main difference between traditional data parallel training and federated learning.

Recapping the traditional data parallel model training paradigm

Let's first look at a simple example of traditional data parallel training using parameter server architecture as shown in the following figure:

Figure 10.1 – Normal data parallel training with two workers and one server

As shown in the preceding figure, in a normal data...