Book Image

Learn Amazon SageMaker - Second Edition

By : Julien Simon
Book Image

Learn Amazon SageMaker - Second Edition

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
1
Section 1: Introduction to Amazon SageMaker
4
Section 2: Building and Training Models
11
Section 3: Diving Deeper into Training
14
Section 4: Managing Models in Production

Understanding when and how to scale

Before we dive into scaling techniques, let's first discuss the monitoring information that we should consider when deciding whether we need to scale, and how we should do it.

Understanding what scaling means

The training log tells us how long the job lasted. In itself, this isn't really useful. How long is too long? This feels very subjective, doesn't it? Furthermore, even when training on the same dataset and infrastructure, changing a single hyperparameter can significantly impact training time. Batch size is one example of this, and there are many more.

When we're concerned about training time, I think we're really trying to answer three questions:

  • Is the training time compatible with our business requirements?
  • Are we making good use of the infrastructure we're paying for? Did we underprovision or overprovision?
  • Could we train faster without spending more money?

Adapting training time...