Book Image

Learn Amazon SageMaker - Second Edition

By : Julien Simon
Book Image

Learn Amazon SageMaker - Second Edition

By: Julien Simon

Overview of this book

Amazon SageMaker enables you to quickly build, train, and deploy machine learning models at scale without managing any infrastructure. It helps you focus on the machine learning problem at hand and deploy high-quality models by eliminating the heavy lifting typically involved in each step of the ML process. This second edition will help data scientists and ML developers to explore new features such as SageMaker Data Wrangler, Pipelines, Clarify, Feature Store, and much more. You'll start by learning how to use various capabilities of SageMaker as a single toolset to solve ML challenges and progress to cover features such as AutoML, built-in algorithms and frameworks, and writing your own code and algorithms to build ML models. The book will then show you how to integrate Amazon SageMaker with popular deep learning libraries, such as TensorFlow and PyTorch, to extend the capabilities of existing models. You'll also see how automating your workflows can help you get to production faster with minimum effort and at a lower cost. Finally, you'll explore SageMaker Debugger and SageMaker Model Monitor to detect quality issues in training and production. By the end of this Amazon book, you'll be able to use Amazon SageMaker on the full spectrum of ML workflows, from experimentation, training, and monitoring to scaling, deployment, and automation.
Table of Contents (19 chapters)
1
Section 1: Introduction to Amazon SageMaker
4
Section 2: Building and Training Models
11
Section 3: Diving Deeper into Training
14
Section 4: Managing Models in Production

Deploying a model with Amazon Elastic Inference

When deploying a model, you have to decide whether it should run on a CPU instance or on a GPU instance. In some cases, there isn't much of a debate. For example, some algorithms simply don't benefit from GPU acceleration, so they should be deployed to CPU instances. At the other end of the spectrum, complex deep learning models for computer vision or natural language processing run best on GPUs.

In many cases, the situation is not that clear-cut. First, you should know what the maximum predicted latency is for your application. If you're predicting a click-through rate for a real-time ad tech application, every millisecond counts; if you're predicting customer churn in a back-office application, not so much.

In addition, even models that could benefit from GPU acceleration may not be large and complex enough to fully utilize the thousands of cores available on a modern GPU. In such scenarios, you're stuck...