Book Image

Optimizing Databricks Workloads

By : Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi
Book Image

Optimizing Databricks Workloads

By: Anirudh Kala, Anshul Bhatnagar, Sarthak Sarbahi

Overview of this book

Databricks is an industry-leading, cloud-based platform for data analytics, data science, and data engineering supporting thousands of organizations across the world in their data journey. It is a fast, easy, and collaborative Apache Spark-based big data analytics platform for data science and data engineering in the cloud. In Optimizing Databricks Workloads, you will get started with a brief introduction to Azure Databricks and quickly begin to understand the important optimization techniques. The book covers how to select the optimal Spark cluster configuration for running big data processing and workloads in Databricks, some very useful optimization techniques for Spark DataFrames, best practices for optimizing Delta Lake, and techniques to optimize Spark jobs through Spark core. It contains an opportunity to learn about some of the real-world scenarios where optimizing workloads in Databricks has helped organizations increase performance and save costs across various domains. By the end of this book, you will be prepared with the necessary toolkit to speed up your Spark jobs and process your data more efficiently.
Table of Contents (13 chapters)
1
Section 1: Introduction to Azure Databricks
5
Section 2: Optimization Techniques
10
Section 3: Real-World Scenarios

Understanding shuffle partitions

Every time Spark performs a wide transformation or aggregations, shuffling of data across the nodes occurs. And during these shuffle operations, Spark, by default, changes the partitions of the DataFrame. For example, when creating a DataFrame, it may have 10 partitions, but as soon as the shuffle occurs, Spark may change the partitions of the DataFrame to 200. These are what we call the shuffle partitions.

This is a default behavior in Spark, but it can be altered to improve the performance of Spark jobs. We can also confirm the default behavior by running the following line of code:

spark.conf.get('spark.sql.shuffle.partitions')

This returns the output of 200. This means that Spark will change the shuffle partitions to 200 by default. To alter this configuration, we can run the following code, which configures the shuffle partitions to 8:

spark.conf.set('spark.sql.shuffle.partitions',8)

You may be wondering why we...