Book Image

Machine Learning with PyTorch and Scikit-Learn

By : Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili
5 (7)
Book Image

Machine Learning with PyTorch and Scikit-Learn

5 (7)
By: Sebastian Raschka, Yuxi (Hayden) Liu, Vahid Mirjalili

Overview of this book

Machine Learning with PyTorch and Scikit-Learn is a comprehensive guide to machine learning and deep learning with PyTorch. It acts as both a step-by-step tutorial and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, we teach the principles allowing you to build models and applications for yourself. Why PyTorch? PyTorch is the Pythonic way to learn machine learning, making it easier to learn and simpler to code with. This book explains the essential parts of PyTorch and how to create models using popular libraries, such as PyTorch Lightning and PyTorch Geometric. You will also learn about generative adversarial networks (GANs) for generating new data and training intelligent agents with reinforcement learning. Finally, this new edition is expanded to cover the latest trends in deep learning, including graph neural networks and large-scale transformers used for natural language processing (NLP). This PyTorch book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

About convergence in neural networks

You might be wondering why we did not use regular gradient descent but instead used mini-batch learning to train our NN for the handwritten digit classification earlier. You may recall our discussion on SGD that we used to implement online learning. In online learning, we compute the gradient based on a single training example (k = 1) at a time to perform the weight update. Although this is a stochastic approach, it often leads to very accurate solutions with a much faster convergence than regular gradient descent. Mini-batch learning is a special form of SGD where we compute the gradient based on a subset k of the n training examples with 1 < k < n. Mini-batch learning has an advantage over online learning in that we can make use of our vectorized implementations to improve computational efficiency. However, we can update the weights much faster than in regular gradient descent. Intuitively, you can think of...