Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

By : Joseph Howse, Joe Minichino
5 (2)
Book Image

Learning OpenCV 5 Computer Vision with Python, Fourth Edition - Fourth Edition

5 (2)
By: Joseph Howse, Joe Minichino

Overview of this book

Computer vision is a rapidly evolving science in the field of artificial intelligence, encompassing diverse use cases and techniques. This book will not only help those who are getting started with computer vision but also experts in the domain. You'll be able to put theory into practice by building apps with OpenCV 5 and Python 3. You'll start by setting up OpenCV 5 with Python 3 on various platforms. Next, you'll learn how to perform basic operations such as reading, writing, manipulating, and displaying images, videos, and camera feeds. From taking you through image processing, video analysis, depth estimation, and segmentation, to helping you gain practice by building a GUI app, this book ensures you'll have opportunities for hands-on activities. You'll tackle two popular challenges: face detection and face recognition. You'll also learn about object classification and machine learning, which will enable you to create and use object detectors and even track moving objects in real time. Later, you'll develop your skills in augmented reality and real-world 3D navigation. Finally, you'll cover ANNs and DNNs, learning how to develop apps for recognizing handwritten digits and classifying a person's gender and age, and you'll deploy your solutions to the Cloud. By the end of this book, you'll have the skills you need to execute real-world computer vision projects.
Table of Contents (12 chapters)
Free Chapter
1
Learning OpenCV 5 Computer Vision with Python, Fourth Edition: Tackle tools, techniques, and algorithms for computer vision and machine learning
Appendix A: Bending Color Space with the Curves Filter

Understanding 3D image tracking and augmented reality

We have already solved problems involving image matching in Chapter 6, Retrieving Images and Searching Using Image Descriptors. Moreover, we have solved problems involving continuous tracking in Chapter 8, Tracking Objects. Therefore, we are familiar with many of the components of an image tracking system, though we have not yet tackled any 3D tracking problems.

So, what exactly is 3D tracking? Well, it is the process of continually updating an estimate of an object's pose (its position and orientation) in a 3D space. Typically, the pose is expressed in terms of six variables: three variables to represent the object's 3D translation (that is, position) and the other three variables to represent its 3D rotation (that is, orientation).

A more technical term for 3D tracking is 6DOF tracking – that is, tracking with 6 degrees of freedom, meaning the 6 variables we just mentioned. With any fewer than 6 variables, it would...