Book Image

Mastering Azure Machine Learning. - Second Edition

By : Christoph Körner, Marcel Alsdorf
Book Image

Mastering Azure Machine Learning. - Second Edition

By: Christoph Körner, Marcel Alsdorf

Overview of this book

Azure Machine Learning is a cloud service for accelerating and managing the machine learning (ML) project life cycle that ML professionals, data scientists, and engineers can use in their day-to-day workflows. This book covers the end-to-end ML process using Microsoft Azure Machine Learning, including data preparation, performing and logging ML training runs, designing training and deployment pipelines, and managing these pipelines via MLOps. The first section shows you how to set up an Azure Machine Learning workspace; ingest and version datasets; as well as preprocess, label, and enrich these datasets for training. In the next two sections, you'll discover how to enrich and train ML models for embedding, classification, and regression. You'll explore advanced NLP techniques, traditional ML models such as boosted trees, modern deep neural networks, recommendation systems, reinforcement learning, and complex distributed ML training techniques - all using Azure Machine Learning. The last section will teach you how to deploy the trained models as a batch pipeline or real-time scoring service using Docker, Azure Machine Learning clusters, Azure Kubernetes Services, and alternative deployment targets. By the end of this book, you’ll be able to combine all the steps you’ve learned by building an MLOps pipeline.
Table of Contents (23 chapters)
1
Section 1: Introduction to Azure Machine Learning
5
Section 2: Data Ingestion, Preparation, Feature Engineering, and Pipelining
11
Section 3: The Training and Optimization of Machine Learning Models
17
Section 4: Machine Learning Model Deployment and Operations

Summary

In this chapter, we learned in which situations we should use ML and where it is coming from, we understood basic concepts of statistics and the mathematical knowledge we require for ML, and we discovered the steps we need to go through to create a performing ML model. In addition, we had a first glimpse at what is required to operationalize ML projects. This should give a base idea of what ML is about and what we will dive into in this book.

As this book not only covers ML but also the cloud platform Azure, in the next two chapters, we will go deeper into a topic that we have not covered so far—we will speak about tooling for ML. Therefore, in the next chapter, we will discover what Azure has to offer in the form of tools and services for ML, and in the third chapter, we will use the most useful tool to run our first hands-on experimentation with ML on Azure.