Book Image

TensorFlow Developer Certificate Guide

By : Oluwole Fagbohun
4 (2)
Book Image

TensorFlow Developer Certificate Guide

4 (2)
By: Oluwole Fagbohun

Overview of this book

The TensorFlow Developer Certificate Guide is an indispensable resource for machine learning enthusiasts and data professionals seeking to master TensorFlow and validate their skills by earning the certification. This practical guide equips you with the skills and knowledge necessary to build robust deep learning models that effectively tackle real-world challenges across diverse industries. You’ll embark on a journey of skill acquisition through easy-to-follow, step-by-step explanations and practical examples, mastering the craft of building sophisticated models using TensorFlow 2.x and overcoming common hurdles such as overfitting and data augmentation. With this book, you’ll discover a wide range of practical applications, including computer vision, natural language processing, and time series prediction. To prepare you for the TensorFlow Developer Certificate exam, it offers comprehensive coverage of exam topics, including image classification, natural language processing (NLP), and time series analysis. With the TensorFlow certification, you’ll be primed to tackle a broad spectrum of business problems and advance your career in the exciting field of machine learning. Whether you are a novice or an experienced developer, this guide will propel you to achieve your aspirations and become a highly skilled TensorFlow professional.
Table of Contents (20 chapters)
1
Part 1 – Introduction to TensorFlow
6
Part 2 – Image Classification with TensorFlow
12
Part 3 – Natural Language Processing with TensorFlow
15
Part 4 – Time Series with TensorFlow

Questions

  1. Apply the principle of naïve forecasting to the “Air Passenger” dataset using the exercise notebook provided.
  2. Implement the moving average technique on the same dataset and evaluate its performance by calculating the MAE and MSE values.
  3. Next, introduce the method of differencing to your moving average model. Again, assess the accuracy of your forecast by determining the MAE and MSE values.
  4. With the sample temperature dataset at hand, demonstrate how to create meaningful features and labels from this data.
  5. Lastly, experiment with the simple FFN model on the dataset and observe its performance.