Book Image

Tableau Certified Data Analyst Certification Guide

By : Mr. Harry Cooney, Mr. Daisy Jones
Book Image

Tableau Certified Data Analyst Certification Guide

By: Mr. Harry Cooney, Mr. Daisy Jones

Overview of this book

The Tableau Certified Data Analyst certification validates the essential skills needed to explore, analyze, and present data, propelling your career in data analytics. Whether you're a seasoned Tableau user or just starting out, this comprehensive resource is your roadmap to mastering Tableau and achieving certification success. The book begins by exploring the fundamentals of data analysis, from connecting to various data sources to transforming and cleaning data for meaningful insights. With practical exercises and realistic mock exams, you'll gain hands-on experience that reinforces your understanding of Tableau concepts and prepares you for the challenges of the certification exam. As you progress, expert guidance and clear explanations make it easy to navigate complex topics as each chapter builds upon the last, providing a seamless learning experience—from creating impactful visualizations to managing content on Tableau Cloud. Written by a team of experts, this Tableau book not only helps you pass the certification exam but also equips you with the skills and confidence needed to excel in your career. It is an indispensable resource for unlocking the full potential of Tableau.
Table of Contents (11 chapters)

Technical Requirements

This section will look into the technical requirements that need to be considered when building a report. The purpose is to inform you about the different data connections that can be made and their performance.

Performance: Data Size and Structure

Tableau is capable of processing large volumes of data, but performance sits on a curve: the larger the dataset, the more computational power is required to access and process it. There is no fixed rule for when performance will meaningfully decrease, as this depends on a complex combination of factors, including the specification of the machine running the query (one with lots of resources, such as RAM, can handle greater quantities of data). It is fair to say that a data source with dozens of columns will be processed slower than one with a handful of them; similarly, a source with millions or even billions of records will be less performant than one with a few hundred.

There are stricter limitations for data sources hosted on Tableau Server or Tableau Cloud rather than a local machine; for example, joins and relationships cannot be established, only blends. These are covered in more detail in Chapter 8, Publishing and Managing Content.

It is worth noting that Tableau generally prefers data that is long rather than wide in structure: that is, Tableau can handle more records better than it can handle more fields.

Data Format and Compatibility with Tableau

Users should be sure that a connector exists natively for the given data source type. This can be a type of file that exists locally on the computer such as an Excel file.

Users should consider whether data is accessed live or saved as an extract – that is, whether the data is a saved snapshot, such as an extract, or whether it would run on a real-time basis, such as a live data source.

The description and limitations of these connections will be explained further in this chapter.