Book Image

Data Forecasting and Segmentation Using Microsoft Excel

By : Fernando Roque
Book Image

Data Forecasting and Segmentation Using Microsoft Excel

By: Fernando Roque

Overview of this book

Data Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection. You’ll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you’ll be able to detect outliers that could indicate possible fraud or a bad function in network packets. By the end of this Microsoft Excel book, you’ll be able to use the classification algorithm to group data with different variables. You’ll also be able to train linear and time series models to perform predictions and forecasts based on past data.
Table of Contents (19 chapters)
1
Part 1 – An Introduction to Machine Learning Functions
5
Part 2 – Grouping Data to Find Segments and Outliers
10
Part 3 – Simple and Multiple Linear Regression Analysis
14
Part 4 – Predicting Values with Time Series

Summary

In this chapter, we learned how to plot variables to see whether they have a link before conducting statistical analysis. After this, we reviewed the differences between the expected values and the results from the linear model. These differences are the input for the formulas of the coefficient of determination and correlation, which show the variables' level of relationship and whether they are direct or inversely proportional.

Statistical methods such as t-statistics and the p-value tell us whether we can reject the null hypothesis. If the slope is zero, there is no relationship between the variables.

Once we have a level of confidence regarding the relationship between variables, we can conclude that the linear regression model is useful for building predictions. In the next chapter, we will write the formula of a simple (single-variable) regression model.