Book Image

Data Forecasting and Segmentation Using Microsoft Excel

By : Fernando Roque
Book Image

Data Forecasting and Segmentation Using Microsoft Excel

By: Fernando Roque

Overview of this book

Data Forecasting and Segmentation Using Microsoft Excel guides you through basic statistics to test whether your data can be used to perform regression predictions and time series forecasts. The exercises covered in this book use real-life data from Kaggle, such as demand for seasonal air tickets and credit card fraud detection. You’ll learn how to apply the grouping K-means algorithm, which helps you find segments of your data that are impossible to see with other analyses, such as business intelligence (BI) and pivot analysis. By analyzing groups returned by K-means, you’ll be able to detect outliers that could indicate possible fraud or a bad function in network packets. By the end of this Microsoft Excel book, you’ll be able to use the classification algorithm to group data with different variables. You’ll also be able to train linear and time series models to perform predictions and forecasts based on past data.
Table of Contents (19 chapters)
1
Part 1 – An Introduction to Machine Learning Functions
5
Part 2 – Grouping Data to Find Segments and Outliers
10
Part 3 – Simple and Multiple Linear Regression Analysis
14
Part 4 – Predicting Values with Time Series

Chapter 13: Training, Validating, and Running the Model

In this chapter, we will apply the forecast time-series model to a real-life dataset to predict automobile sales in the US, using Kaggle retail sales data.

We have quarterly data for the years 2012 to 2019. We will design, train, and test the model and see whether it does a good job of making predictions.

In Machine Learning (ML), when working with statistical groups, linear regression, or time series, you have to apply your experience to do an initial quality check of data with a chart. In a time-series forecast, you use your judgment to see whether the data has autocorrelation. That means that the past has influence over the present and is useful to predict the future using a forecast.

Many time-series datsets have two components that need prediction – a season component and a growing decreasing trend. The season component is when data has cycling peaks depending on a year's seasons.

After these calculations...