Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Feature Engineering Cookbook
  • Table Of Contents Toc
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook - Second Edition

By : Galli
4.8 (16)
close
close
Python Feature Engineering Cookbook

Python Feature Engineering Cookbook

4.8 (16)
By: Galli

Overview of this book

Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to confidently build end-to-end and reproducible feature engineering pipelines that can be deployed into production.
Table of Contents (14 chapters)
close
close

Extracting Features from Date and Time Variables

Date and time variables are those that contain information about dates, times, or both. In programming, we refer to these variables as datetime variables. Examples of datetime variables include date of birth, the time of an event, and date of last payment. The cardinality of datetime variables is usually very high. This means they contain a multitude of unique values, each corresponding to a specific combination of date and/or time. Therefore, we do not utilize datetime variables in their raw format in machine learning models. Instead, we enrich the dataset by extracting multiple features from these variables. In this chapter, we will learn how to extract new features from date and time by utilizing the pandas dt module. Later on, we will automate feature extraction over multiple variables with Feature-engine.

This chapter will cover the following recipes:

  • Extracting features from dates with pandas
  • Extracting features...
CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Feature Engineering Cookbook
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon