Book Image

Building Statistical Models in Python

By : Huy Hoang Nguyen, Paul N Adams, Stuart J Miller
Book Image

Building Statistical Models in Python

By: Huy Hoang Nguyen, Paul N Adams, Stuart J Miller

Overview of this book

The ability to proficiently perform statistical modeling is a fundamental skill for data scientists and essential for businesses reliant on data insights. Building Statistical Models with Python is a comprehensive guide that will empower you to leverage mathematical and statistical principles in data assessment, understanding, and inference generation. This book not only equips you with skills to navigate the complexities of statistical modeling, but also provides practical guidance for immediate implementation through illustrative examples. Through emphasis on application and code examples, you’ll understand the concepts while gaining hands-on experience. With the help of Python and its essential libraries, you’ll explore key statistical models, including hypothesis testing, regression, time series analysis, classification, and more. By the end of this book, you’ll gain fluency in statistical modeling while harnessing the full potential of Python's rich ecosystem for data analysis.
Table of Contents (22 chapters)
1
Part 1:Introduction to Statistics
7
Part 2:Regression Models
10
Part 3:Classification Models
13
Part 4:Time Series Models
17
Part 5:Survival Analysis

Chi-square goodness-of-fit test power analysis

Let’s use an example where a phone vendor sells four popular models of phones, models A, B, C, and D. We want to determine how many samples are required to produce a power of 0.8 so we can understand whether there is a statistically significant difference between the popularity of different phones so the vendor can more properly invest in phone acquisitions. In this case, the null hypothesis asserts that 25% of phones from each model were sold. In reality, 20% of phones sold were model A, 30% were model B, 19% were model C, and 31% were model D phones.

Testing different values for the nobs argument (number of observations), we find that a minimum of 224 samples produces a power just greater than 0.801. Adding more samples will only improve this. If the true distribution were more divergent from the hypothesized 25% even split, fewer samples would be required. However, since the splits are relatively close to 25%, a high volume...