Book Image

Applying Math with Python - Second Edition

By : Sam Morley
Book Image

Applying Math with Python - Second Edition

By: Sam Morley

Overview of this book

The updated edition of Applying Math with Python will help you solve complex problems in a wide variety of mathematical fields in simple and efficient ways. Old recipes have been revised for new libraries and several recipes have been added to demonstrate new tools such as JAX. You'll start by refreshing your knowledge of several core mathematical fields and learn about packages covered in Python's scientific stack, including NumPy, SciPy, and Matplotlib. As you progress, you'll gradually get to grips with more advanced topics of calculus, probability, and networks (graph theory). Once you’ve developed a solid base in these topics, you’ll have the confidence to set out on math adventures with Python as you explore Python's applications in data science and statistics, forecasting, geometry, and optimization. The final chapters will take you through a collection of miscellaneous problems, including working with specific data formats and accelerating code. By the end of this book, you'll have an arsenal of practical coding solutions that can be used and modified to solve a wide range of practical problems in computational mathematics and data science.
Table of Contents (13 chapters)

What is statistics?

Statistics is the systematic study of data using mathematical – specifically, probability – theory. There are two major aspects to statistics. The first aspect of statistics is summarizing data. This is where we find numerical values that describe a set of data, including characteristics such as the center (mean or median) and spread (standard deviation or variance) of the data. These values are called descriptive statistics. What we’re doing here is fitting a probability distribution that describes the likelihood of a particular characteristic appearing in a population. Here, a population simply means a complete set of measurements of a particular characteristic – for example, the height of every person currently alive on Earth.

The second – and arguably more important – aspect of statistics is inference. Here, we try to estimate the distribution of data describing a population by computing numerical values on a relatively...