Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
Part 1 – Securing a Machine Learning System
Part 2 – Creating a Secure System Using ML
Part 3 – Protecting against ML-Driven Attacks
Part 4 – Performing ML Tasks in an Ethical Manner

Enhancing existing capabilities

Enhancing security measures means not building the wall higher, but rather making the existing wall more effective and efficient. For the hacker, this means that existing strategies continue to work, but with a lower probability of success. It becomes a matter of not creating a new strategy, but of making the existing strategy work better when it comes to overcoming security solutions. This change in direction can be difficult for the hacker to overcome because it means working through a particular security strategy and any new methodologies learned may not work everywhere. In short, it means a return to some level of manual hacking in many cases because automation is no longer effective.

The following sections provide an overview of strategies for augmenting existing security strategies presented in previous chapters in a manner that doesn’t build a higher wall. The goal is to slow the hacker down, create distractions, make automation less...