Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
1
Part 1 – Securing a Machine Learning System
5
Part 2 – Creating a Secure System Using ML
12
Part 3 – Protecting against ML-Driven Attacks
15
Part 4 – Performing ML Tasks in an Ethical Manner

Technical requirements

This chapter requires that you have access to either Google Colab or Jupyter Notebook to work with the example code. The Requirements to use this book section of Chapter 1, Defining Machine Learning Security, provides additional details on how to set up and configure your programming environment. When testing the code, use a test site, test data, and test APIs to avoid damaging production setups and to improve the reliability of the testing process. Testing over a non-production network is highly recommended, but not absolutely necessary. Using the downloadable source code is always highly recommended. You can find the downloadable source on the Packt GitHub site at https://github.com/PacktPublishing/Machine-Learning-Security-Principles or on my website at http://www.johnmuellerbooks.com/source-code/.

Dataset used in this chapter

The dataset used in this chapter is custom to this chapter because it demonstrates constructions that you shouldn’t use...