Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
1
Part 1 – Securing a Machine Learning System
5
Part 2 – Creating a Secure System Using ML
12
Part 3 – Protecting against ML-Driven Attacks
15
Part 4 – Performing ML Tasks in an Ethical Manner

Summary

This chapter has helped you understand various kinds of ML applications and how those applications are affected by various security threats. It has also emphasized the limitations of ML and pointed out some of the misconceptions that people have about ML – and possibly computers in general. Finally, you have discovered the ways in which humans inadvertently introduce security issues into ML applications by making invalid assumptions and by corrupting data in ways that humans understand, but computers don’t.

Knowing about the various forces at work to corrupt your ML model and data may be frightening at first, but there are certain things you can do to mitigate the threat, such as ensuring users are trained not to unintentionally introduce bias into the dataset. ML security measures can help you achieve these goals in an efficient manner. Of course, constant diligence is also a requirement.

The dataset end of things takes focus in the next chapter. It’s not just users who can ruin your day by introducing a security problem; using the wrong dataset source or any number of other issues can also be a problem. This next chapter will help you understand these issues so that you can consider the solutions presented in light of your organization’s needs.