Book Image

Machine Learning Security Principles

By : John Paul Mueller
Book Image

Machine Learning Security Principles

By: John Paul Mueller

Overview of this book

Businesses are leveraging the power of AI to make undertakings that used to be complicated and pricy much easier, faster, and cheaper. The first part of this book will explore these processes in more depth, which will help you in understanding the role security plays in machine learning. As you progress to the second part, you’ll learn more about the environments where ML is commonly used and dive into the security threats that plague them using code, graphics, and real-world references. The next part of the book will guide you through the process of detecting hacker behaviors in the modern computing environment, where fraud takes many forms in ML, from gaining sales through fake reviews to destroying an adversary’s reputation. Once you’ve understood hacker goals and detection techniques, you’ll learn about the ramifications of deep fakes, followed by mitigation strategies. This book also takes you through best practices for embracing ethical data sourcing, which reduces the security risk associated with data. You’ll see how the simple act of removing personally identifiable information (PII) from a dataset lowers the risk of social engineering attacks. By the end of this machine learning book, you'll have an increased awareness of the various attacks and the techniques to secure your ML systems effectively.
Table of Contents (19 chapters)
1
Part 1 – Securing a Machine Learning System
5
Part 2 – Creating a Secure System Using ML
12
Part 3 – Protecting against ML-Driven Attacks
15
Part 4 – Performing ML Tasks in an Ethical Manner

Defining anomalies

In the ML realm, anomalies represent data that lies outside of the expected range. The anomaly may occur accidentally, or someone may have put it there, but an anomaly is usually unexpected and potentially unwanted. Anomalies come in two forms:

  • Outliers: When the data doesn’t fit in with the rest of the data, it’s an outlier. An outlier can come in many forms, but the defining characteristic is that it’s definitely not wanted because it skews any sort of analysis performed with it in place.
  • Novelties: Sometimes, the data is outside the normal range, but it actually does fit in with the rest of the data. In this case, the data represents a new example that must be considered as part of any analysis. Otherwise, the analysis will fail to represent the true state of whatever the analysis is supposed to bring to light.

Part of the problem, then, is that both kinds of anomaly lie outside the normal range, but one is wanted and the...