Book Image

MLOps with Red Hat OpenShift

By : Ross Brigoli, Faisal Masood
Book Image

MLOps with Red Hat OpenShift

By: Ross Brigoli, Faisal Masood

Overview of this book

MLOps with OpenShift offers practical insights for implementing MLOps workflows on the dynamic OpenShift platform. As organizations worldwide seek to harness the power of machine learning operations, this book lays the foundation for your MLOps success. Starting with an exploration of key MLOps concepts, including data preparation, model training, and deployment, you’ll prepare to unleash OpenShift capabilities, kicking off with a primer on containers, pods, operators, and more. With the groundwork in place, you’ll be guided to MLOps workflows, uncovering the applications of popular machine learning frameworks for training and testing models on the platform. As you advance through the chapters, you’ll focus on the open-source data science and machine learning platform, Red Hat OpenShift Data Science, and its partner components, such as Pachyderm and Intel OpenVino, to understand their role in building and managing data pipelines, as well as deploying and monitoring machine learning models. Armed with this comprehensive knowledge, you’ll be able to implement MLOps workflows on the OpenShift platform proficiently.
Table of Contents (13 chapters)
Free Chapter
Part 1: Introduction
Part 2: Provisioning and Configuration
Part 3: Operating ML Workloads

Part 1: Introduction

This part covers the basic concepts of MLOps and an introduction to Red Hat OpenShift.

This part has the following chapters:

  • Chapter 1, Introduction to MLOps and OpenShift