Book Image

Practical Guide to Applied Conformal Prediction in Python

By : Valery Manokhin
4 (1)
Book Image

Practical Guide to Applied Conformal Prediction in Python

4 (1)
By: Valery Manokhin

Overview of this book

In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
Table of Contents (19 chapters)
Free Chapter
Part 1: Introduction
Part 2: Conformal Prediction Framework
Part 3: Applications of Conformal Prediction
Part 4: Advanced Topics


This chapter explored uncertainty quantification for regression problems, a critical aspect of data science and machine learning. It highlighted the importance of uncertainty and the methods to handle it effectively to make more reliable predictions and decisions.

One of the significant sections of this chapter was dedicated to various approaches that can be used to produce prediction intervals. It systematically broke down and explained diverse methods, elucidating how each works and their advantages and disadvantages. This detailed analysis aids in understanding the mechanisms behind these approaches and their practical application in real-world regression problems.

Furthermore, this chapter discussed building prediction intervals and predictive distributions using conformal prediction. We provided a step-by-step guide to constructing these intervals and distributions. This chapter also offered practical insights and tips for effectively utilizing conformal prediction...