Book Image

Practical Guide to Applied Conformal Prediction in Python

By : Valery Manokhin
4 (1)
Book Image

Practical Guide to Applied Conformal Prediction in Python

4 (1)
By: Valery Manokhin

Overview of this book

In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
Table of Contents (19 chapters)
Free Chapter
Part 1: Introduction
Part 2: Conformal Prediction Framework
Part 3: Applications of Conformal Prediction
Part 4: Advanced Topics

Conformal prediction for computer vision

In this section, we will dive deeper into the diverse applications of conformal prediction in computer vision. With its broad range of problems, from image classification to object detection, computer vision presents challenges that require precise and reliable machine learning models. As we navigate these applications, we will demonstrate how conformal prediction is a robust tool to quantify the uncertainty associated with these models.

By exploring these practical examples, we aim to underscore the importance of understanding the model’s confidence in its predictions. Understanding is crucial, especially when decisions based on these predictions could have significant consequences. Conformal prediction, with its ability to provide a measure of uncertainty, can greatly aid researchers and practitioners in making informed decisions based on the outputs of their models. This improves the system’s reliability and paves the way...