Book Image

Practical Guide to Applied Conformal Prediction in Python

By : Valery Manokhin
4 (1)
Book Image

Practical Guide to Applied Conformal Prediction in Python

4 (1)
By: Valery Manokhin

Overview of this book

In the rapidly evolving landscape of machine learning, the ability to accurately quantify uncertainty is pivotal. The book addresses this need by offering an in-depth exploration of Conformal Prediction, a cutting-edge framework to manage uncertainty in various ML applications. Learn how Conformal Prediction excels in calibrating classification models, produces well-calibrated prediction intervals for regression, and resolves challenges in time series forecasting and imbalanced data. Discover specialised applications of conformal prediction in cutting-edge domains like computer vision and NLP. Each chapter delves into specific aspects, offering hands-on insights and best practices for enhancing prediction reliability. The book concludes with a focus on multi-class classification nuances, providing expert-level proficiency to seamlessly integrate Conformal Prediction into diverse industries. With practical examples in Python using real-world datasets, expert insights, and open-source library applications, you will gain a solid understanding of this modern framework for uncertainty quantification. By the end of this book, you will be able to master Conformal Prediction in Python with a blend of theory and practical application, enabling you to confidently apply this powerful framework to quantify uncertainty in diverse fields.
Table of Contents (19 chapters)
Free Chapter
Part 1: Introduction
Part 2: Conformal Prediction Framework
Part 3: Applications of Conformal Prediction
Part 4: Advanced Topics

Methods for solving imbalanced data

Where should we turn when confronted with the challenge of imbalanced class distribution? While a significant portion of resources in the field suggest using resampling methods, including undersampling, oversampling, and techniques such as SMOTE, it’s crucial to note that these recommendations often sidestep foundational theory and practical application.

Before diving into solutions for imbalanced classes, it’s essential first to understand their underlying nature. The issue might be better approached in specific scenarios such as anomaly detection rather than in a traditional classification problem.

In specific scenarios, the class imbalance isn’t static. It can evolve or may be influenced by the need for adequate labels. For instance, consider a system monitoring network traffic for potential security threats. Initially, threats might be rare, leading to a class imbalance. However, as the system matures and more potential...