Book Image

Deep Learning for Time Series Cookbook

By : Vitor Cerqueira, Luís Roque
Book Image

Deep Learning for Time Series Cookbook

By: Vitor Cerqueira, Luís Roque

Overview of this book

Most organizations exhibit a time-dependent structure in their processes, including fields such as finance. By leveraging time series analysis and forecasting, these organizations can make informed decisions and optimize their performance. Accurate forecasts help reduce uncertainty and enable better planning of operations. Unlike traditional approaches to forecasting, deep learning can process large amounts of data and help derive complex patterns. Despite its increasing relevance, getting the most out of deep learning requires significant technical expertise. This book guides you through applying deep learning to time series data with the help of easy-to-follow code recipes. You’ll cover time series problems, such as forecasting, anomaly detection, and classification. This deep learning book will also show you how to solve these problems using different deep neural network architectures, including convolutional neural networks (CNNs) or transformers. As you progress, you’ll use PyTorch, a popular deep learning framework based on Python to build production-ready prediction solutions. By the end of this book, you'll have learned how to solve different time series tasks with deep learning using the PyTorch ecosystem.
Table of Contents (12 chapters)

Advanced operations in PyTorch

After exploring basic tensor operations, let’s now dive into more advanced operations in PyTorch, specifically the linear algebra operations that form the backbone of most numerical computations in deep learning.

Getting ready

Linear algebra is a subset of mathematics. It deals with vectors, vector spaces, and linear transformations between these spaces, such as rotations, scaling, and shearing. In the context of deep learning, we deal with high-dimensional vectors (tensors), and operations on these vectors play a crucial role in the internal workings of models.

How to do it…

Let’s start by revisiting the tensors we created in the previous section:

print(t1)
print(t2)

The dot product of two vectors is a scalar that measures the vectors’ direction and magnitude. In PyTorch, we can calculate the dot product of two 1D tensors using the torch.dot() function:

dot_product = torch.dot(t1, t3)
print(dot_product...